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Three-dimensional (3D) characterization of nanomaterials is traditionally performed by either
cross-sectional milling with a focused ion beam (FIB), or transmission electron microscope tomog-
raphy. While these techniques can produce high quality reconstructions, they are destructive, or
require thin samples, often suspended on support membranes. Here we demonstrate a complemen-
tary technique allowing non-destructive investigation of the 3D structure of samples on bulk sub-
strates. This is performed by imaging backscattered electron (BSE) emission at multiple primary
beam energies – as the penetration depth of primary electrons is proportional to the beam energy,
depth information can be obtained through variations in the beam acceleration. The detected signal
however consists of a mixture of the penetrated layers, meaning the structure’s three-dimensional
geometry can only be retrieved after deconvolving the BSE emission profile from the observed BSE
images. This work demonstrates this novel approach by applying a blind source separation deconvo-
lution algorithm to multi-energy acquired BSE images. The deconvolution can thereby allow a 3D
reconstruction to be produced from the acquired images of an arbitrary sample, showing qualitative
agreement with the true depth structure, as verified through FIB cross-sectional imaging.

I. INTRODUCTION

Determining the three-dimensional (3D) structure of
a nanomaterial is among the most important types of
characterization in nanoscience, due the strong influ-
ence of geometry on a material’s optical, mechanical,
thermal, electrical, and magnetic properties. In many
devices such as transistors, thermoelectrics1, batteries2,
and photovoltaics3,4 there are several layers of different
materials in which the internal structure and buried in-
terfaces are critical to device operation.

The most commonly used techniques for examining
nanomaterial structure, scanning electron microscopy
(SEM)5 and atomic force microscopy (AFM)6, typically
only yield information on the surface topography, ne-
glecting sub-surface structural or compositional informa-
tion. Transmission electron microscopy (TEM) has been
used to retrieve the 3D structure of nanomaterials7–9, but
this method requires thin samples (on the order of 100
nm), often exfoliated onto a support membrane or grid,
as well as collection at a wide range of tilt angles (often
∼100 images, at angles of ±70◦ from normal). Alterna-
tively, a focused ion beam (FIB) can be used to mill away
parts of a sample, which in conjunction with tilted SEM
imaging (FIB-SEM) can provide a cross-sectional view of
the internal structure. Repeated slicing and imaging can
lead to a full 3D reconstruction10,11, although this neces-
sarily destroys the entirety of the sample, and the serial
nature of the process makes it difficult to implement over
large areas.

While both of these techniques can provide excellent
spatial resolution down to the nanometer scale12,13, a
simple and non-destructive technique that can map the
3D structure of large areas of any arbitrary sample (par-
ticularly those on bulk substrates of hundreds of mi-
crons thickness) would be extremely appealing. Herein
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FIG. 1. Schematic of the MEDSEM process. A BSE image
is composed of a superposition of virtual depth layers Oi in
the measured sample. The mixing extends over deeper lay-
ers at higher primary beam energies, which corresponds to
the increased depth of the BSE emission volume (left). This
is represented by the counts per depth distributions (mid-
dle), which shows wider distribution curves at higher energies
(increased redness). The deconvolved BSE images are then
combined to form a 3D reconstruction of the nanomaterial
(right).

we demonstrate a novel technique of multi-energy decon-
volution scanning electron microscopy (MEDSEM) al-
lowing for simple, fast and non-destructive mapping of
subsurface nanoscale features on arbitrary substrates, us-
ing only a SEM; a tool already available in nearly every
nanoscience research laboratory.

MEDSEM relies on the energy-dependent electron pen-
etration depth to produce 3D representations of the mea-
sured material – increasing the primary beam energy re-
sults in deeper electron penetration into the sample14,
and the back-scattering efficiency depends on atomic
number, which allows for elemental contrast15. Back-
scattered electron (BSE) emission energy is also depth-
dependent, which has been previously investigated for
depth-resolved imaging16, however the necessity of in-
situ energy filtering limited such measurements to a few
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depth slices, and precluded the feasibility of 3D struc-
tural rendering. MEDSEM omits this energy filtering,
instead retrieving depth information by varying the pri-
mary beam energy. While this approach was previ-
ously dismissed due to the unavoidable mixing of layer
sampling16, we show this can be remedied by applying
a blind deconvolution to multiple BSE images obtained
at various primary beam energies14,17–19, as depicted in
Fig. 1.

The deconvolution process treats the nanomaterial
structure as consisting of N distinct subsurface layer
bins, On=[1:N ]. For a set of I images at primary beam
energies Ei=[1:I], the BSE image Yi is modeled as a mix-
ing process, assumed to be a linear superposition of these
subsurface layer bins. For higher primary beam energies
this superposition extends over deeper subsurface layers
as the primary electrons produce BSEs from deeper sub-
surface regions. This translates to

Yi = h1,iO1 + h2,iO2 + ... + hN,iON (1)

where hn,i are the energy-dependent mixing weight fac-
tors that dictate the mixing between the physical lay-
ers that contribute to the observed image (equivalent to
the local extent of the point spread function). The task
is to simultaneously obtain the best estimates of both
hn,i and On from the acquired multi-energy BSE images
Yi, preferably without the need for any a priori infor-
mation of the nanomaterial (blind deconvolution). This
can be achieved by applying a blind source separation
(BSS)20–22 reconstruction algorithm that solves the ac-
quired multi-energy BSE images for independent images
On.

II. RESULTS

Our exploration of this new imaging technique pro-
ceeds in three sections: First, we demonstrate the MED-
SEM procedure by walking through the reconstruction of
a 3D rendering of a Ag-Cu2O core-shell nanowire. Sec-
ond, we show the ability to volumetrically image fea-
tures under a solid layer, imaging two Au nanowires un-
derneath a Au sheet, confirming agreement with FIB-
SEM cross-sectional measurements. Finally, we apply
the method to a multi-layer system, showing the recon-
struction of Au-Cu2O core-shell nanoparticles below two
stacked Au-Cu2O sheets.

A. Ag-Cu2O Core-Shell Nanowire Reconstruction

We begin by showing how MEDSEM can be used
to retrieve the depth structure of a Ag-Cu2O core-
shell nanowire, synthesized in the method described
previously23. The nanowire is imaged on a crystalline sil-
icon substrate at 21 primary beam energies in the range
Ei=4-25 keV (see Methods for details).
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FIG. 2. Ag-Cu2O core-shell nanowire imaging. a, Diagram
of primary electron (gray) and BSE (red) trajectories, and
b, BSE SEM image demonstrating surface sensitivity at low
acceleration energy, contrasted with c, d, showing high ac-
celeration energy allowing the core of the nanowire to be-
come visible. Scale bars are 100 nm. Cross-sectional slices of
BSE image stack, e, before deconvolution, showing smearing
between images from acceleration energies Ei, contrasted to
the reconstruction, f, after deconvolution, showing the core
clearly visible, and the nanowire extent realistically confined.
The height is calibrated to the estimated nanowire total thick-
ness. g, Comparison to FIB-SEM cross-sectional image. h,
3D reconstructions of the core-shell nanowire, with a surface
slice through the X-Y plane in i, showing the Ag core (black)
clearly visible throughout the imaged length. Tic marks are
200 nm in X and Y, 50 nm in Z. Pixel size is 3.4 nm.

The influence of the primary beam energy is depicted
in Fig. 2 a-d – panel a shows the estimated penetration
depth of a 4 keV electron beam into a Ag-Cu2O core-
shell nanowire geometry, with the actual BSE image the
Ag-Cu2O core-shell nanowire shown in b. The surface
is clearly seen as dominating the electron emission sig-
nal, and there is little contrast difference across the wire
width. Conversely, at a 12 keV primary beam energy
(shown in c,d), we see the electron beam penetrating
into the core of the nanowire system in the diagram, and
accordingly can now clearly distinguish the brighter core
present in the center of the nanowire in the BSE image.

While the simple combination of stacked BSE images
at varying energies can thus yield rough depth informa-
tion, increasing beam energies still contain substantial
influences of the preceding layers, as discussed in Fig.
1. In Fig. 2e we show the results of this initial combi-
nation of BSE layers as a virtual cross-cut through the
nanowire. The convolution of layer information is clearly
visible through the smearing of the core region through-
out the depth of the wire cross section, as well as a general
lack of confinement in the wire structure. As described
previously, this influence cannot be removed by image
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FIG. 3. a, BSE image of an Au sheet on top of two Au nanowires, with two Au nanoparticles adjacent. b, 3D MEDSEM
reconstruction of the nanostructure system, as well as a surface slice (dotted line in b) showing the region below the Au sheet
in c. Cross-sectional views (taken through the dashed line in a) using FIB-SEM in d, and the MEDSEM reconstruction in e,
showing qualitative agreement. Pixel size is 4.5 nm.

subtraction alone16.
Here the benefit of the BSS algorithm becomes clear

– after processing with the deconvolution algorithm, the
full MEDSEM image in Fig. 2f shows significantly im-
proved clarity of the core-shell nanowire cross section.
Specifically, the problems with the raw BSE stack im-
age are largely remedied; the core region is now clearly
visible, and the extent of the shell is more reasonably
contained. The conversion from energy- to depth-scaling
was determined using the dimensions of the nanowire –
it was estimated that the lateral and vertical dimensions
of the nanowire were roughly similar (an essentially cir-
cular cross section), and a linear mapping is applied to
the depth slices.

The quality of the deconvolved MEDSEM structure
can be further evaluated by comparing it with an ac-
tual FIB-SEM cross-cut image in Fig. 2g. Considering
the simplicity of this technique, there is reasonable re-
semblance between the MEDSEM cross-cut and the ac-
tual cross-sectional image. The core-shell structure is
resolved, and if the nanowire geometry were known, the
orientation of the core can also be estimated.

The full 3D reconstruction of the nanowire is shown
in Fig. 2h. The quality of the reconstruction is ini-
tially not obvious to assess, but by performing a surface
slice laterally through the mid-plane of the wire (dashed
line), as seen in Fig. 2j it becomes clear that it is pos-
sible to reconstruct the full 3D geometry of the imaged
core-shell nanowire using MEDSEM, with the black core
region clearly visible throughout the cut-plane image.

B. Two-Layer Nanowire-Sheet Reconstruction

Next, we demonstrate how MEDSEM can be used to
image features through material layers. Here we image a
structure composed of two Au nanowires partially lying
underneath a thin Au sheet, adjacent to two Au nanopar-

ticles, as shown in the standard BSE image in Fig. 3a.
The MEDSEM 3D reconstruction of the system of

nanostructures is shown Fig. 3b, following the procedure
described above with BSE images obtained at 26 equally-
spaced energies in the range Ei=2-28 keV. The nanopar-
ticles are assumed to be roughly spherical, and used for
the depth rescaling. The reconstruction again appears to
be reasonably accurate – a separation between the layers
of the sample is visible, with the Au sheet resting above
the center of the nanowires, with a clearly confined thick-
ness. This is more evident after performing a surface slice
through the dotted line in b, in Fig. 3c elucidating the
structure beneath the sheet.

Further confirmation of the MEDSEM reconstruction
can be made by comparing a FIB-SEM cross section
(taken through the dashed line in Fig. 3a) shown in Fig.
3d, to a cross-sectional slice at the same location in the
reconstruction in e. Particularly, the relative sizes and
shapes of the nanowire cross sections, with the left ellip-
tical nanowire oriented with its longer axis vertically, and
the right nanowire horizontal, as visible in the FIB-SEM
cross section, is also captured in the MEDSEM recon-
struction.

C. Multi-Layer Sheet-Nanoparticle Reconstruction

In a final exploration of the applications of this tech-
nique, we prepared a sample consisting of Au-Cu2O core-
shell nanoparticles lying underneath two stacked Au-
Cu2O sheets, to show how MEDSEM can be employed
to retrieve 3D information of complex multi-layer struc-
tures, composed of a variety of materials. A standard
BSE image is shown in Fig. 4a, displaying a somewhat
ambiguously layered stack of two sheets, above partially
visible core-shell nanoparticles.

The sample was imaged with 28 primary beam ener-
gies in the range Ei=3-29 keV, and the MEDSEM pro-
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FIG. 4. a, BSE image of a double-layer Au-Cu2O sheet stack
above Au-Cu2O core-shell nanoparticles. b, FIB-SEM cross
section taken at the location indicated by the dashed line in a.
c, 3D MEDSEM reconstruction of the nanostructure system.
d, e, 3D MEDSEM reconstructions of surface slices through
the X-Y plane (indicated in c), displaying the variations of
the imaged system with depth. Pixel size is 2.7 nm.

cedure applied to create a 3D reconstruction, as shown
in Fig. 4c, again using the estimated nanoparticle sym-
metry for depth scaling. This full reconstruction view al-
ready clarifies the stacking order of the Au-Cu2O sheets,
and correctly places them over the nanoparticles, both
in agreement with the FIB-SEM cross section shown in
b. Furthermore, by taking layer slices through the sys-
tem (as indicated by the dashed lines in c), the geometry
of the stacked structures becomes visible: In the first
layer slice, shown in Fig. 4d, the structure of the lower
(pentagonal) Au-Cu2O sheet is visible below the larger
top sheet. The core-shell geometry of the nanoparticles
is also visible from the bisected particle on the left side

(x=100, y=550) of the reconstruction. The layer geome-
try is further clarified by a second, lower slice, shown in
Fig. 4e. Here we see the ∼7.5 core-shell nanoparticles
visible in the lowest position in the stack, demonstrat-
ing the capability of MEDSEM to reconstruct the depth
profile of a complex, multi-stacked system.

III. DISCUSSION

While the results discussed herein establish the ability
of MEDSEM to retrieve qualitative information of the
subsurface structure of nanomaterial systems, the recon-
struction of the 3D structure from BSE images is still
not perfect, due to inherent limitations of the model em-
ployed. We next discuss two such issues, as well as pos-
sible improvements to overcome these limitations.

First, the use of only BSE emission results in surface
topography artifacts in the deconvolved images, devi-
ating from the true structure of the measured system.
This is expected, as a BSE image is a flat projection of
the surface topography and therefore local height differ-
ences are not resolvable. This loss of topographic resolu-
tion is visible in all three measurements presented here:
In the first Ag-Cu2O nanowire rendering, the FIB re-
vealed a flower-like outer structure of the nanowire, how-
ever the MEDSEM reconstruction projects this topog-
raphy as a flat surface (Fig. 2i). Similarly, in the Au
nanowire/nanosheet measurements, the curvature of the
sheet visible in the FIB image is lost in the cross-sectional
reconstruction (Fig. 3e). Finally, in the layered system,
it is visible in the FIB cross section that the sheets are
resting diagonally across the nanoparticles; however in
the MEDSEM reconstruction, the system appears com-
pletely flat (Fig. 4c-d). Additionally, the position of the
exposed nanoparticle (on the far left hand side of Fig.
4d) relative to the other nanoparticles becomes skewed,
as the electron beam interacts with different amounts
of material between the exposed and covered particles,
obfuscating their positions. This results in the exposed
particle to appear above those embedded beneath the
sheets.

We propose that surface measurements from AFM or
possibly tilted SEM imaging could be incorporated in the
reconstruction algorithm in order to allow for offsetting of
the reconstruction with a displacement from the known
surface profile. Alternatively, this loss of topography can
be overcome by embedding the nanomaterial in a flat,
lower-contrast material. This would cause the electron
beam to interact with an amount of embedding material
proportional to the surface topography, thereby allowing
the original surface structure to be better reconstructed
by the deconvolution algorithm.

Second, while MEDSEM provides 3D structural in-
formation showing qualitative agreement with the true
structure of the imaged system, it does not immediately
provide a quantitative measurement of depth dimensions.
As shown in Fig. 2, calibration of the deconvolved slices
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to a quantitative depth can be performed by utilizing
known (or estimated) dimensions and using a simple lin-
ear mapping of the reconstruction slices to total depth of
a feature. This could be improved through either tilted
SEM or AFM measurements providing a calibration of
known depths to observable features in the 3D recon-
struction, particularly if the dimensions or rough geom-
etry of the sample are initially unknown.

An alternative method of calibration, avoiding addi-
tional measurements or estimates, could be performed
through the application of MEDSEM to a wide set of
reference samples (experimentally, or using simulations),
which would provide a database of depth-energy rela-
tionships. These scalings could then be applied to future
measurements on arbitrary structures of known (or esti-
mated) compositions to obtain depth dimensional infor-
mation, without needing to destroy the measured sample.
While an unknown composition could cause distortions
from variations in the emission volume, in practice (for
the samples measured here) we see qualitative agreement
between MEDSEM images and FIB-SEM cross sections,
suggesting this is not a critical issue.

In essence, all aforementioned shortcomings of MED-
SEM result from its inherent “blindness,” which can be
reduced by the inclusion of additional information (some
of which could be easily obtainable in the SEM), and
thereby improving the surface and depth reconstruction
capabilities.

IV. CONCLUSIONS

Herein, we have shown that subsurface features in
nanomaterials can be accurately retrieved from BSE im-
ages acquired using a range of primary beam energies
and applying a BSS deconvolution algorithm based on a
simplified image formation model. Despite the employed
algorithm requiring no prior information of the sample
composition or structure, the results agree qualitatively
well with depth profiles obtained from FIB-SEM cross-
sectional imaging.

While the reconstructed depth profile is not yet per-
fect, the visualization of deconvolved 3D structures al-
ready allows for analysis that may otherwise not be pos-
sible to perform. For example, ensuring the full coating
of a core-shell nanowire on a substrate (Fig. 2) would
be quite difficult without damaging the sample (through
FIB cross-cuts, or thinning of the substrate for TEM),
particularly if the interface between the nanowire and
the substrate was of interest (e.g. to prevent shorting).
The convolution between layers prevents imaging of this
coating from raw BSE images alone, but after the MED-
SEM deconvolution and reconstruction, the full coating
is unambiguous.

Furthermore, improvement of the BSS deconvolution
can be readily achieved by introducing additional infor-

mation on composition or the surface profile. The al-
ready promising results, combined with clear routes for
future improvements make MEDSEM an attractive new
imaging method for electron microscopy, providing easily
obtainable 3D information in a fast, non-destructive, and
sample-agnostic manner.

V. METHODS

Samples were produced by drop-casting nanostructures
(produced as reported previously23,24) onto clean silicon
substrates. Fiducial markings were scribed into the sub-
strates to allow location of the same structures between
MEDSEM and FIB-SEM measurements.

BSE image stacks were obtained with a Verios XHR
SEM from FEI with the Mirror Detector (MD) and the
concentric backscatter detector (CBSD); these were cho-
sen due to their excellent elemental contrast, although
other BSE detectors could also be used. The images
were obtained at ultra-high magnifications at roughly
nanometer sized spatial resolutions for various primary
beam energies in the energy range of Ei=2-29 keV. Af-
ter the registration and contrast-normalization of the ac-
quired multi-energy BSE images, the BSS deconvolution
routine was applied to solve for the deconvolved BSE im-
ages Oi.

The image formation model reduces to the matrix
equation Y = HO, with Y and O being 3D matrices
containing the obtained, and deconvolved BSE images,
respectively, and H the 2D mixing matrix. The decon-
volution was performed by a multiplicative matrix fac-
torization algorithm that alternately solves for O and H
in an iterative manner. In this case, we used the min-
imization of the Alpha-divergence cost function25,26. A
total variation regularization filtering was applied dur-
ing the deconvolution, as BSS algorithms are known to
inherently introduce noise27.

A Helios NanoLab DualBeam from FEI was used to
perform FIB-SEM cross-sectional imaging in order to as-
sess the quality of the obtained reconstructions. Samples
were coated in a protective platinum layer before FIB
cross-sectioning causing the visible material above the
interrogated samples in the FIB-SEM images.
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